This project assessed the climate-growth relationships of whitebark pine growing at high elevations in the Eagle Cap Wilderness of the Wallowa Mountains in Eastern Oregon. Funding from the project was used to purchase supplies for the newly established UW-Platteville Earth Sciences Laboratory, housed in the Geography Program, and to support an undergraduate student with salary during the academic year and with expenses associated with attending the Annual Meeting of the Association of American Geographers in Washington, D.C. The research provided training to the student who is now investigating graduate programs to continue her education and produced a tree-ring chronology that spans the years AD 920–2006. This chronology is exceptional in length for the region in which it was developed. These data will be used as preliminary data in a grant proposal that is currently being developed for submission to the National Science Foundation Paleoclimate program. The larger grant will include collaborators from UW-Platteville, UW-Oshkosh, and the University of Minnesota – Twin Cities, with an expected budget of approximately $600,000.

I have attached the abstract for the poster presentation. The poster is available via the laboratory website: http://www.uwplatt.edu/~larsonev/eslpeople.htm.
Dear Allison Hudack,

Congratulations on a successful submission of your abstract to the 2010 Annual Meeting, Washington, DC. Please remember that the AAG accepts all submissions, and that you will be expected to present. Your Program Identification Number (PIN) is: 90048580. Your abstract details are as follows:

Title: Reconstructing Climate Using the Rings of Ancient Whitebark Pine Trees from the Eagle Cap Wilderness, Eastern Oregon

Keywords: Whitebark Pine, Pinus albicaulis, Oregon-eastern, Eagle Cap Wilderness, Climate reconstruction, dendrochronology

Type: Poster

Abstract: The global climate system varies across both space and time, and by understanding past climates, we may understand the modern environment better and use this knowledge to predict future changes. We are analyzing tree-ring samples collected from 40 whitebark pine trees growing in the Eagle Cap Wilderness in Eastern Oregon to explore past climate variations in that region. This research has the potential to provide insight into climate over the past several centuries, as many of the samples we are analyzing contain 600-800 rings. We will develop a master tree-ring chronology from these samples and analyze the climate-tree growth relationships expressed by these trees using correlation and response function analysis. The strongest relationship identified will then be used to develop a transfer function that uses ring width data to estimate past climate conditions. Our research will lay the groundwork for the development of a network of tree-ring chronologies in the Eagle Cap Wilderness region in Oregon that has the potential to be expanded to the millennial time scale.

Authors: Allison Rose Hudack, University Wisconsin Platteville hudacka@uwplatt.edu*
Evan R Larson, Ph.D., University of Wisconsin - Platteville larsonev@uwplatt.edu

Topics: Biogeography
Climatology
Environment

A/V Equipment: None

Notes: I understand that there will be a 4’x8’ posterboard for me to use, but that there will be no other audio visual equipment available. Additionally, all abstracts will be published in the conference proceedings and online. Submission of an abstract implies permission to publish.

You are responsible for the content of your abstract, title and authors, please review your abstract and make necessary edits. You may return to the submission console to edit your abstract and/or submit as session if you wish.

Reminder: Your Program Identification Number (PIN) is 90048580.

A Confirmation Email has been sent to hudacka@uwplatt.edu